Development and evaluation of machine learning algorithms for biomedical applications
2017
- 548Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage548
- Downloads419
- Abstract Views129
Thesis / Dissertation Description
Gene network inference and drug response prediction are two important problems in computational biomedicine. The former helps scientists better understand the functional elements and regulatory circuits of cells. The latter helps a physician gain full understanding of the effective treatment on patients. Both problems have been widely studied, though current solutions are far from perfect. More research is needed to improve the accuracy of existing approaches.This dissertation develops machine learning and data mining algorithms, and applies these algorithms to solve the two important biomedical problems. Specifically, to tackle the gene network inference problem, the dissertation proposes (i) new techniques for selecting topological features suitable for link prediction in gene networks; a graph sparsification method for network sampling; (iii) combined supervised and unsupervised methods to infer gene networks; and (iv) sampling and boosting techniques for reverse engineering gene networks. For drug sensitivity prediction problem, the dissertation presents (i) an instance selection technique and hybrid method for drug sensitivity prediction; (ii) a link prediction approach to drug sensitivity prediction; a noise-filtering method for drug sensitivity prediction; and (iv) transfer learning approaches for enhancing the performance of drug sensitivity prediction. Substantial experiments are conducted to evaluate the effectiveness and efficiency of the proposed algorithms. Experimental results demonstrate the feasibility of the algorithms and their superiority over the existing approaches.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know