Detecting and characterizing self hiding behavior in android applications
2018
- 280Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage280
- Downloads182
- Abstract Views98
Thesis / Dissertation Description
Applications (apps) that conceal their activities are fundamentally deceptive; app marketplaces and end-users should treat such apps as suspicious. However, due to its nature and intent, activity concealing is not disclosed up-front, which puts users at risk. This study focuses on characterization and detection of such techniques, e.g., hiding the app or removing traces, known as 'self hiding' (SH) behavior. SH behavior has not been studied per se - rather it has been reported on only as a byproduct of malware investigations. This gap is addressed via a study and suite of static analyses targeted at SH in Android apps.SH behavior ranges from hiding the app's presence or activity to covering an app's traces, e.g., by blocking phone calls/ text messages or removing calls and messages from logs. Using static analysis tools on a large dataset of 9,452 Android apps (benign as well as malicious) the frequency of 12 such SH behaviors is exposed. It has revealed that malicious apps employ 1.5 SH behaviors per app on average. Surprisingly, SH behavior is also employed by legitimate ('benign') apps, which can affect users negatively in multiple ways. The approach has high precision and recall (combined F-measure = 87.19%). This approach is also efficient, with analysis typically taking just 37 seconds per app.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know