Thermal Vibration of Magnetostrictive Functionally Graded Material Shells with the Transverse Shear Deformation Effects
Vol: 11, Issue: 1
2016
- 49Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage49
- Downloads42
- Abstract Views7
Article Description
The transverse shear deformation effect on the functionally graded material (FGM) circular cylindrical shells with mounted magnetostrictive layer under thermal vibration is investigated by using the generalized differential quadrature (GDQ) method. In the time dependent of displacement field, the first order shear deformation theory (FSDT) is used. The dynamic equilibrium differential equations with displacements and shear rotations of FGM shells under the magnetostrictive load and thermal load are normalized into the dynamic discrete equations. The computational solutions for thermal stresses and center deflections of magnetostrictive FGM circular cylindrical shells with four edges in simply supported boundary conditions are obtained. Some parametric effects on the FGM shells are also investigated. They are thickness of mounted magnetostrictive layer, control gain values, temperature of environment, and power law index of FGM shells.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know