Predator-Prey Model with Herding Behavior and Hunting Quota
2020
- 88Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage88
- Downloads70
- Abstract Views18
Artifact Description
The Lotka-Volterra predator-prey model is widely studied and used in many disciplines such as biology, ecology and economics. It is used to describe the growth and coexistence of two interacting populations. The model consists of a pair of first-order nonlinear differential equations. In this paper, we studied steady states, stability of steady states, existence of limit cycles, and bifurcation behavior of the predator-prey model by modifying the existing model with hunting quota. We also illustrated our results with numerical simulations.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know