Understanding and modeling soybean (Glycine max., L. Merr.): Growth and development under optimum conditions
Page: 1-216
2007
- 232Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage232
- Abstract Views232
Thesis / Dissertation Description
A new soybean model was developed by incorporating existing and new approaches. Data for model development were obtained from a long-term ecological intensification experiment (1999-2005) at Lincoln, NE. The phenology was simulated as a function of temperature and photoperiod distinguishing floral induction and post-induction processes for the time of flowering. The component accurately simulated the dynamics of vegetative development, final node number and the occurrence of major reproductive stages with root mean square errors of 1.8 days for major phenological stages in the long-term experiment. Leaf area index (LAI) was simulated considering potential growth driven by temperature and water stress and also the dry matter available for leaf growth. The rate of potential gross leaf area expansion was simulated using the first derivative of a logistic function and accounting for plant population density. Leaf area senescence was also simulated using a logistic function, assuming monocarpic senescence began at flowering stage (R1). LAI simulation with the proposed model had average RMSE of 0.59 m m-2. Leaf photosynthesis was simulated as a function of solar radiation, temperature, and RH, ambient CO2 concentration, and phenology using a modified Farquhar approach. Maintenance respiration and partitioning of dry matter and the conversion from leaf to canopy level photosynthesis rate were simulated using an approach similar to that in the WOFOST model. Seed growth was simulated by combining the concept of hydraulic model of pod set (Sheldrake, 1979) and assimilated partitioning driven seed number determination (Charles-Edwards et al., 1986) and phenology driven mean individual seed growth. The proposed model simulated total above ground and seed dry matter with reasonable accuracy under high-yielding environments while requiring minimum cultivar specific input parameters. The model, therefore, is particularly suited for applications related to soybean management aiming at high yield
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know