Annihilators of local cohomology modules
Page: 1-62
2011
- 76Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage76
- Abstract Views76
Thesis / Dissertation Description
In many important theorems in the homological theory of commutative local rings, an essential ingredient in the proof is to consider the annihilators of local cohomology modules. We examine these annihilators at various cohomological degrees, in particular at the cohomological dimension and at the height or the grade of the defining ideal. We also investigate the dimension of these annihilators at various degrees and we refine our results by specializing to particular types of rings, for example, Cohen Macaulay rings, unique factorization domains, and rings of small dimension.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know