Automated Outlier Detection in Crime Data Using Programming
2018
- 380Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage380
- Downloads280
- Abstract Views100
Article Description
After the University of Nebraska-Lincoln Police Department began publishing their Daily Crime and Fire Log online, journalists and other members of the public have been able to view updates almost instantly. They can see what incidents have been reported so far for that day, and they can view any day back to 2005. Using an advanced search, they can also filter the data by date range, location or crime type. However, there is no way to analyze the data. There’s no way to see how crime reports have evolved over time. Other people have developed programs to look at past trends and outliers to see how things have changed, but there was no way to know when new outliers were happening. The goal of this program is to fill that gap. This program uses Python to calculate the average number of reports per month for each crime type. Then, as the reports come in each month, it checks to see if any crime type has an abnormally high number of crimes reported. At the end of the month, it checks to see if an unusually low number of crimes were reported for a crime type. If an abnormality is found, a message is created and sent to a messaging platform common to newsrooms called Slack. This allows journalists to be notified of the abnormality. From there, they’re able to look into the reports to determine if it is worth a story.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know