Understanding short-timescale neuronal firingsequences via bias matrices
2015
- 121Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage121
- Downloads108
- Abstract Views13
Article Description
The brain generates persistent neuronal firing sequences across varying timescales. The short-timescale (~100ms) sequences are believed to be crucial in the formation and transfer of memories. Large-amplitude local field potentials known as sharp-wave ripples (SWRs) occur irregularly in hippocampus when an animal has minimal interaction with its environment, such as during resting, immobility, or slow-wave sleep. SWRs have been long hypothesized to play a critical role in transferring memories from the hippocampus to the neocortex [1]. While sequential firing during SWRs is known to be biased by the previous experiences of the animal, the exact relationship of the short-timescale sequences during SWRs and longer-timescale sequences during spatial and nonspatial behaviors is still poorly understood. One hypothesis is that the sequences during SWRs are “replays” or “preplays” of “master sequences”, which are sequences that closely mimic the order of place fields on a linear track [2,3]. Rather than particular hard-coded “master” sequences, an alternative explanation of the observed correlations is that similar sequences arise naturally from the intrinsic biases of firing between pairs of cells. To distinguish these and other possibilities, one needs mathematical tools beyond the center-of-mass sequences and Spearman’s rank-correlation coefficient that are currently used.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know