Smoke Characterization and Feasibility of the MomentMethod for Spacecraft Fire Detection
2015
- 453Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage453
- Downloads424
- Abstract Views29
Article Description
The Smoke Aerosol Measurement Experiment (SAME) has been conducted twice by the National Aeronautics and Space Administration and provided real-time aerosol data in a spacecraft micro-gravity environment. Flight experiment results have been recently analyzed with respect to comparable groundbased experiments. The ground tests included an electrical mobility analyzer as a reference instrument for measuring particle size distributions of the smoke produced from overheating five common spacecraft materials. Repeatable sample surface temperatures were obtained with the SAME ground-based hardware, and measurements were taken with the aerosol instruments returned from the International Space Station comprising two commercial smoke detectors, three aerosol instruments, which measure moments of the particle size distribution, and a thermal precipitator for collecting smoke particles for transmission electron microscopy (TEM). Moment averages from the particle number concentration (zeroth moment), the diameter concentration (first moment), and the mass concentration (third moment) allowed calculation of the count mean diameter and the diameter of average mass of smoke particles. Additional size distribution information, including geometric mean diameter and geometric standard deviations, can be calculated if the particle size distribution is assumed to be lognormal. Both unaged and aged smoke particle size distributions from ground experiments were analyzed to determine the validity of the lognormal assumption. Comparisons are made between flight experiment particle size distribution statistics generated by moment calculations and microscopy particle size distributions (using projected area equivalent diameter) from TEM grids, which have been returned to the Earth.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know