Effect of Bio-Optical Parameter Variability on the Remote Estimation of Chlorophyll-a Concentration in Turbid Productive Waters: Experimental Results
2005
- 1,126Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage1,126
- Downloads1,073
- 1,073
- Abstract Views53
Article Description
The analytical development and underlying hypothesis of a three-band algorithm for estimating chlorophyll-a concentration ([Chla]) in turbid productive waters are presented. The sensitivity of the algorithm to the spectral location of the bands used is analyzed. A large set of experimental observations ([Chla] varied between 4 and 217 mg m-3 and turbidity between 2 and 78 nephelometric turbidity units) was used to calibrate and validate the algorithm. It was found that the variability of the chlorophyll-a fluorescence quantum yield and of the chlorophyll-a specific absorption coefficient can reduce considerably the accuracy of remote predictions of [Chla]. Instead of parameterizing these interferences, their effects were minimized by tuning the spectral regions used in the algorithm. This allowed us to predict [Chla] with a relative root-mean-square error of less than 30%.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know