PlumX Metrics
Embed PlumX Metrics

Planning for robust reserve networks using uncertainty analysis

2006
  • 0
    Citations
  • 492
    Usage
  • 0
    Captures
  • 1
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Planning land-use for biodiversity conservation frequently involves computer-assisted reserve selection algorithms. Typically such algorithms operate on matrices of species presence–absence in sites, or on species-specific distributions ofmodel predicted probabilities of occurrence in grid cells. There are practically always errors in input data—erroneous species presence–absence data, structural and parametric uncertainty in predictive habitat models, and lack of correspondence between temporal presence and long-run persistence. Despite these uncertainties, typical reserve selection methods proceed as if there is no uncertainty in the data or models. Having two conservation options of apparently equal biological value, one would prefer the option whose value is relatively insensitive to errors in planning inputs. In this work we show how uncertainty analysis for reserve planning can be implemented within a framework of information-gap decision theory, generating reserve designs that are robust to uncertainty. Consideration of uncertainty involves modifications to the typical objective functions used in reserve selection. Search for robust-optimal reserve structures can still be implemented via typical reserve selection optimization techniques, including stepwise heuristics, integer-programming and stochastic global search.

Bibliographic Details

Atte Moilanen; Michael C. Runge; Jane Elith; Andrew Tyre; Yohay Carmel; Eric Fegraus; Brendan A. Wintle; Mark Burgman; Yakov Ben-Haim

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know