Analysis of three-dimensional fracture mechanics problems:A non-intrusive approach using a generalized finite element method
2012
- 1,871Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage1,871
- Downloads1,844
- 1,844
- Abstract Views27
Article Description
This paper shows that the generalized finite element method with global–local enrichment functions (GFEMgl) can be implemented non-intrusively in existing closed-source FEM software as an add-on module. The GFEMgl is based on the solution of interdependent global (structural) and local (crack) scale problems. In the approach presented here, an initial global scale problem is solved by a commercial finite element analysis software, local problems containing 3-D fractures are solved by an hp-adaptive GFEM software and an enriched global scale problem is solved by a combination of the FEM and GFEM softwares. The interactions between the solvers are limited to the exchange of load and solution vectors and does not require the introduction of user subroutines to existing FEM software. As a results, the user can benefit from built-in features of available commercial grade FEM software while adding the benefits of the GFEM for this class of problems. Several threedimensional fracture mechanics problems aimed at investigating the applicability and accuracy of the proposed two-solver methodology are presented.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know