PlumX Metrics
Embed PlumX Metrics

A pseudo-likelihood approach for estimating diagnosticaccuracy of multiple binary medical tests

2015
  • 0
    Citations
  • 277
    Usage
  • 0
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Latent class models with crossed subject-specific and test(rater)-specific random effects have been proposed to estimate the diagnostic accuracy (sensitivity and specificity) of a group of binary tests or binary ratings. However, the computation of these models are hindered by their complicated Monte Carlo Expectation–Maximization (MCEM) algorithm. In this article, a class of pseudo-likelihood functions is developed for conducting statistical inference with crossed random-effects latent class models in diagnostic medicine. Theoretically, the maximum pseudo-likelihood estimation is still consistent and has asymptotic normality. Numerically, our results show that not only the pseudo-likelihood approach significantly reduces the computational time, but it has comparable efficiency relative to the MCEM algorithm. In addition, dimension-wise likelihood, one of the proposed pseudolikelihoods, demonstrates its superior performance in estimating sensitivity and specificity.

Bibliographic Details

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know