An Energy-Aware Bioinformatics Application for Assembling Short Reads in High Performance Computing Systems
2012
- 223Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage223
- Downloads208
- Abstract Views15
Conference Paper Description
Current biomedical technologies are producing massive amounts of data on an unprecedented scale. The increasing complexity and growth rate of biological data has made bioinformatics data processing and analysis a key and computationally intensive task. High performance computing (HPC) has been successfully applied to major bioinformatics applications to reduce computational burden. However, a naïve approach for developing parallel bioinformatics applications may achieve a high degree of parallelism while unnecessarily expending computational resources and consuming high levels of energy. As the wealth of biological data and associated computational burden continues to increase, there has become a need for the development of energy efficient computational approaches in the bioinformatics domain. To address this issue, we have developed an energy-aware scheduling (EAS) model to run computationally intensive applications that takes both deadline requirements and energy factors into consideration. An example of a computationally demanding process that would benefit from our scheduling model is the assembly of short sequencing reads produced by next generation sequencing technologies. Next generation sequencing produces a very large number of short DNA reads from a biological sample. Multiple overlapping fragments must be aligned and merged into long stretches of contiguous sequence before any useful information can be gathered. The assembly problem is extremely difficult due to the complex nature of underlying genome structure and inherent biological error present in current sequencing technologies. We apply our EAS model to a newly proposed assembly algorithm called Merge and Traverse, giving us the ability to generate speed up profiles. Our EAS model was also able to dynamically adjust the number of nodes needed to meet given deadlines for different sets of reads.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know