Two-Sided Matching for mentor-mentee allocations—Algorithms and manipulation strategies
PLoS ONE, Vol: 14, Issue: 3
2019
- 108Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage108
- Downloads98
- Abstract Views10
Article Description
In scenarios where allocations are determined by participant’s preferences, Two-Sided Matching is a well-established approach with applications in College Admissions, School Choice, and Mentor-Mentee matching problems. In such a context, participants in the matching have preferences with whom they want to be matched with. This article studies two important concepts in Two-Sided Matching: multiple objectives when finding a solution, and manipulation of preferences by participants. We use real data sets from a Mentor-Mentee program for the evaluation to provide insight on realistic effects and implications of the two concepts. In the first part of the article, we consider the quality of solutions found by different algorithms using a variety of solution criteria. Most current algorithms focus on one criterion (number of participants matched), while not directly taking into account additional objectives. Hence, we evaluate different algorithms, including multi-objective heuristics, and the resulting trade-offs. The evaluation shows that existing algorithms for the considered problem sizes perform similarly well and close to the optimal solution, yet multi-objective heuristics provide the additional benefit of yielding solutions with better quality on multiple criteria. In the second part, we consider the effects of different types of preference manipulation on the participants and the overall solution. Preference manipulation is a concept that is well established in theory, yet its practical effects on the participants and the solution quality are less clear. Hence, we evaluate the effects of three manipulation strategies on the participants and the overall solution quality, and investigate if the effects depend on the used solution algorithm as well.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know