Tailoring magnetic anisotropy at the ferromagnetic/ferroelectric interface
Appl. Phys. Lett., Vol: 92, Issue: 122905
2008
- 77Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage77
- Downloads69
- Abstract Views8
Article Description
It is predicted that magnetic anisotropy of a thin magnetic film may be affected by the polarization of a ferroelectric material. Using a Fe∕BaTiO3 bilayer as a representative model and performing first-principles calculations, we demonstrate that a reversal of the electric polarization of BaTiO3 produces a sizable change in magnetic anisotropy energy of Fe films. Tailoring the magnetic anisotropy of a nanomagnet by an adjacent ferroelectric material may yield entirely new device concepts, such as electric-field controlled magnetic data storage.We thank Ruqian Wu for fruitful discussions. This work was supported by the NSF and the Nanoelectronics Research Initiative through the Materials Research Science and Engineering Center at the University of Nebraska, the Nebraska Research Initiative, the Office of Naval Research, and the NSFC (Grant No. 50771072). Computations were performed at the Center for Nanophase Materials Sciences, Oak Ridge National Laboratory.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know