Classifying Political Similarity of Twitter Users
2015
- 239Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage239
- Downloads200
- Abstract Views39
Paper Description
The emergence of large scale social networks has led to research in approaches to classify similar users on a network. While many such approaches use data mining techniques, recent efforts have focused on measuring the similarity of users using structural properties of the underlying graph representing the network. In this paper, we identify the Twitter followers of the 2016 presidential candidates and classify them as Democrat, Republican or Bipartisan. We did this by designing a new approach to measuring structural similarity, PolRANK. PolRANK computes the similarity of a pair of users by accounting for both the number of candidates they follow from each party and the specific candidates they follow. To test our algorithm, we crawled a data set of all followers of every presidential candidate in June 2015 and then ran experiments on a random subset of 10% of that data. When tested against similar algorithms, PolRANK outperforms SimRank[1], P-Rank[2] and Cosine-Similarity as it is more efficient when used in large data sets. This efficiency is due to PolRANK’s ability to calculate similarity independent of other users. The time complexity of P-Rank is O(n4) while the time complexity of PolRANK is O(n3).
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know