Time Dependence of Few-Body Forster Interactions Among Ultracold Rydberg Atoms
2020
- 178Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage178
- Downloads109
- Abstract Views69
Article Description
Rubidium Rydberg atoms in either |mj| sublevel of the 36p3/2 state can exchange energy via Stark-tuned Förster resonances, including two-, three-, and four-body dipole-dipole interactions. Three-body interactions of this type were first reported and categorized by Faoro et al. [Nat. Commun. 6, 8173 (2015)] and their Borromean nature was confirmed by Tretyakov et al. [Phys. Rev. Lett. 119, 173402 (2017)]. We report the time dependence of the N-body Förster resonance N×36p3/2,|mj|=1/2→36s1/2+37s1/2+(N−2)×36p3/2,|mj|=3/2, for N=2, 3, and 4, by measuring the fraction of initially excited atoms that end up in the 37s1/2 state as a function of time. The essential features of these interactions are captured in an analytical model that includes only the many-body matrix elements and neighboring atom distribution. A more sophisticated simulation reveals the importance of beyond-nearest-neighbor interactions and of always-resonant interactions.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know