Application of scaled nucleation theory to metallic vapor condensation
Journal of Chemical Physics
2001
- 2Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage2
- Abstract Views2
Article Description
In this paper we report that scaled nucleation theory (SNT) can describe moderately well the observed nucleation behavior of a significant number of refractory materials if a more appropriate value of a quantity commonly referred to as the excess surface entropy is used. With the availability of more reliable critical point and liquid property data, we are better able to calculate this quantity and we find that for refractory materials it can be as small as one half to one third the quantity traditionally used in its approximation. As a result of using more accurate values, we find considerably better agreement between SNT and experiment than what was originally determined. We also explain why using surface tension slope information to determine the excess surface entropy can lead to substantial errors in the SNT supersaturation prediction.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know