Decoupling Flat-fielding and Non-linearity Correction of a Pushbroom Radiometer – Analysis of Landsat 9 Operational Land Imager-2 Prelaunch Test Data
2020
- 105Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage105
- Downloads58
- Abstract Views47
Artifact Description
One of the goals in any calibration effort for pushbroom imaging radiometers is to flat field the instrument data across the full dynamic range. A challenge when approaching levels of 1% and lower in a 14 bit system is that the non-uniformity and non-linearity become a coupled variable set. The Landsat-9 Operational Land Imager-2 (OLI2) prelaunch radiometric calibrations conducted at Ball Aerospace utilized spectral sources, large integrating spheres and rotation stages. These tools, combined with unique collects such as the integration time sweeps and yaw collects at multiple illumination levels provided the basis for improvements in the calibration of both the full field of view and the full dynamic range for all of spectral bands. In an integration time sweep, a constant source level is observed while varying the detectors’ integration time; in a yaw collect the instrument is rotated so that each detector views the same part of the illumination source. While previously we reported on the characterization of the calibration source used, this presentation will focus on how the multiple datasets were utilized to arrive at flat fielding and the non-linearity corrections. The method used enables a reduction in the uncertainty of the uniformity correction throughout the dynamic range. The uncertainty in the source non-uniformity, the source stability and the instrument under test stability are the three limiting factors. The data sources, the types of non-linearities, the differences between integration time sweeps and radiance collects, the representations of the non-linearity and the validation of the relative gain corrections throughout the dynamic range will be presented.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know