PlumX Metrics
Embed PlumX Metrics

Optimal Candidate Generation in Spatial Co-Location Mining

2009
  • 0
    Citations
  • 844
    Usage
  • 0
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Thesis / Dissertation Description

Existing spatial co-location algorithms based on levels suffer from generating extra, nonclique candidate instances. Thus, they require cliqueness checking at every level. In this thesis, a novel, spatial co-location mining algorithm that automatically generates co-located spatial features without generating any nonclique candidates at any level is proposed. Subsequently, this algorithm generates fewer candidates than other existing level-wise, co-location algorithms without losing any pertinent information. The benefits of this algorithm have been clearly observed at early stages in the mining process.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know