Examining Model Complexity's Effects When Predicting Continuous Measures From Ordinal Labels
2023
- 161Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage161
- Downloads119
- Abstract Views42
Thesis / Dissertation Description
Many real world problems require the prediction of ordinal variables where the values are a set of categories with an ordering to them. However, in many of these cases the categorical nature of the ordinal data is not a desirable outcome. As such, regression models treat ordinal variables as continuous and do not bind their predictions to discrete categories. Prior research has found that these models are capable of learning useful information between the discrete levels of the ordinal labels they are trained on, but complex models may learn ordinal labels too closely, missing the information between levels. In this study, we use several datasets where the outcome is continuous and generate ordinal labels from this variable. The performance of two types of models, namely ordinal classification and continuous regression, is examined to determine the effect of model complexity. The experiment confirms previous findings that regression models trained on the synthetic ordinal labels reach optimal performance on the continuous outcome with less complexity than compared with performance on the ordinal labels. Additionally, the former overfit more quickly as complexity increases. This suggests that for machine learning settings where we would like to form a continuous analog for ordinal training labels, models should be trained with less complexity than what appears optimal given the observed performance on the ordinal labels reaches optimization after the underlying ground truth continuous measure’s optimization occurs.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know