General relativity, 8
Physics 3710 – Intermediate Modern Physics, Spring 2018, Page: 1-6
2018
- 51Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage51
- Downloads40
- Abstract Views11
Artifact Description
The Cosmic Microwave Background (CMB)As previously noted, the universe is filled with microwave radiation. The frequency spectrum of this ubiquitous radiation follows a blackbody curve, as shown to the right. (http://map.gsfc.nasa.gov/media/ContentMedia/990015b.jpg) Note that photon energy (proportional to 1/wavelength) increases to the right. You might think the curve shown is the plot of a theoretical equation, but what is shown is actual measured data taken during the flight of the COBE (Cosmic Microwave Explorer) satellite/microwave observatory in 1990. The uncertainties in the measurements are about the thickness of the curve plotted. When compared with a theoretical blackbody curve the disagreement is less than one part in 2000. The CMB isn’t LIKE a blackbody spectrum—it IS a blackbody spectrum! Note that the maximum in the CMB spectrum is at a wavelength of about 2 mm. The energy of a photon of that wavelength is E = hc λ 6.6x10–4 eV.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know