GIS Ordination Approach to Model Distribution of Shrub Species in Northern Utah
Vol: 17, Issue: 1
2011
- 822Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage822
- Downloads659
- Abstract Views163
Article Description
Anthropogenic and natural disturbances represent a serious threat to natural ecosystems dominated by big sagebrush (Artemisia tridentata). Conservation efforts aim to restore original species composition and prevent the invasion of undesirable species. In order to restore the historic plant communities, we need a clear understanding of how species compositions are distributed along environmental gradients. Species ordination is a process of placing plant species along environmental gradients. This study was conducted in Rich County, Utah, where substantial changes in species composition have been documented in recent years. Field data, literature review, multivariate analyzes, GIS and remote sensing techniques, and expert knowledge were used to define environmental variables and their respective suitability ranges of where shrub species may occur along this area. Ordination and CART- statistical analyzes were used to estimate and predict suitability of shrub species along environmental gradients. GIS procedures were used to spatially predict species distribution. Field data and the Southwest Regional Gap Analysis Project data provided useful information to build the model and 20 percent of field data was withheld to cross-validate the findings. Final results showed that the shrub species distribution in the rangelands of Northern Utah, specifically Rich County, might be driven by precipitation and temperature gradients -influenced greatly by elevation. Slope contributing area, NDVI, and solar radiation were statistically significant factors explaining shrub distribution. To our perception, soil moisture availability might be the most explanatory variable behind these findings. In the model validation, the Kappa coefficient was K = 61.3 percent and the overall model accuracy was 74 percent. The location of species distribution areas, in the final map, can be useful to managers in order to define where resources might be allocated to preserve and restore these native rangeland ecosystems.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know