Wildfires and Storm Events: Multiple Stressors Alter Stream Form and Function in Semi-Arid Watersheds
2019
- 21Usage
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage21
- Abstract Views21
- Mentions1
- References1
- Wikipedia1
Artifact Description
Climate change in the western U.S. is causing larger wildfires and more extreme precipitation events. When these two ecological changes collide, they create massive ecosystem disturbance, affecting terrestrial and aquatic environments as well as human well-being. In October 2018, such a scenario occurred when the remnants of Hurricane Rosa dumped torrential rain on a two-week old, 610-km2 burn scar in central Utah. The wildfires, flash flooding, and debris flows triggered the evacuation of approximately 10,000 residents and created a sediment plume in the downstream lake that was visible from space. We collected stream water samples from 10 watersheds during and after the storm, allowing us to quantify the interactive effects of megafire and extreme rain on aquatic biogeochemical fluxes. We analyzed samples for a broad suite of physicochemical parameters including organic matter concentration and biodegradability, water isotopes, major ions, trace metals, and nutrients. While the burned and unburned streams showed various concentration-discharge relationships, the effects of the megafire were apparent in nearly every parameter we quantified, increasing particulate loading and resulting in a substantial loss of terrestrial carbon, nitrogen, and phosphorus.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know