Configuration of 3U CubeSat Structures for Gain Improvement of S-band Antennas
2012
- 2,442Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage2,442
- Downloads1,847
- 1,847
- Abstract Views595
Article Description
Nano- and pico-satellites in low earth orbit (LEO), unlike their larger counterparts, have more stringent limitations on antenna design due to power constraints that govern the operational frequency and size that defines the mass and volume constraints. High bandwidth applications use higher frequencies and require higher transmission power. High gain antennas can reduce the transmission power requirements. CubeSat’s with body-mounted solar cells are limited in power generation due to limited surface area. Deployable solar panels offer a solution to the limited power by maximizing the surface area of solar cells exposed to solar radiation. The metallic deployable solar panel support structure can be exploited to behave as an electrical ground and microwave signal reflector for a high gain antenna in several configurations. This paper presents multiple novel high-gain S-band antennas that exploit the structure of a 3U CubeSat equipped with deployable solar panels for gain improvement. The configuration of the satellite is designed to operate in a low drag configuration by operating outside of the passive gravity gradient stabilized attitude by using passive or active attitude control. Gain improvements of more than 3 dB are obtained through careful packaging. The antenna configurations have a gain of more than 7dBi and bandwidth of more than 10MHz. Analysis is provided with considerations of power, satellite coverage, as well as attitude stability. This technique of improving antenna gain can be extended to higher as well as lower frequency of operation.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know