Modularized Air-Launch with Virgin Orbit's LauncherOne System: Responsive SmallSat Constellation Construction Measured in Hours, Not Months
2019
- 1,363Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage1,363
- Downloads864
- Abstract Views499
Artifact Description
As small satellites and the constellations they comprise have become increasingly prevalent, there has been greater interest in the value added by agile and responsive launch systems. Responsiveness, defined here as the ability of a launch vehicle to react quickly and positively to changing payload, customer, or situational constraints, is a capability that has largely been enabled by the rise of the smallsat launch industry and introduces a new set of considerations for smallsat mission stakeholders. This work examines the relative advantage of an air-launched small satellite launch vehicle network for rapid deployment of small satellite constellations, using Virgin Orbit’s LauncherOne system and three hypothetical constellation architectures.Using a combinatoric approach to analyze the possible launch manifests for hypothetical constellations, the impacts of geographic launch site positioning and launch vehicle recycle time on constellation injection time and thereby time-to-market for the constellation missions’ provided service are examined. It is demonstrated that the air launched architecture requires a third as many launch platforms at fewer activated spaceports than an equivalently performing fixed-site launch network, among other advantages. Gaps in the existing policy framework to support responsive launch as well as a plan for future work within this research area are then identified.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know