Using plant-soil feedbacks to predict plant biomass in diverse communities
Ecology, Vol: 97, Issue: 8, Page: 2064-2073
2016
- 257Usage
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage257
- Downloads251
- Abstract Views6
Article Description
It has become clear that plants can create soils that affect subsequent plant growth. However, because plant-soil feedbacks (PSFs) are typically measured in monoculture experiments, it remains unclear to what extent PSFs affect plant growth in communities. Here we used data from a factorial PSF experiment to predict the biomass of 12 species grown in 162 plant community combinations. Five different plant growth models were parameterized with either monoculture biomass data (Null) or with PSF data (PSF) and model predictions were compared to plant growth observed in communities. For each of the five models, PSF model predictions were closer to observed species biomass in communities than Null model predictions. PSFs, which were associated with a 28% difference in plant biomass across soil types, explained 10% more variance than Null models. Results provided strong support for a small role for PSFs in predicting plant growth in communities and suggest several reasons that PSFs, as traditionally measured in monoculture experiments, may overestimate PSF effects in communities. First, monoculture data used in Null models inherently includes “self ” PSF effects. Second, PSFs must be large relative to differences in intrinsic growth rates among species to change competitive outcomes. Third, PSFs must vary among species to change species relative abundances.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know