A Systems Biology Approach To Identify Dna Methylation Based Disease Biomarkers
2019
- 65Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage65
- Abstract Views42
- Downloads23
Thesis / Dissertation Description
Identifying a set of biomarkers that can accurately distinguish the patients from healthy individuals is one of the major challenges in medical science. Although several meta-analysis and multi-omics data integration approaches are currently available that aim to overcome this challenge, the majority of them either (i) do not integrate epigenetic data (i.e., DNA methylation) with other data types, or (ii) do not consider the complex ways in which genes interact. Methylation is known to play a vital role in the progression of many complex diseases such as cancer. In this thesis, we propose a novel computational framework that integrates (i) DNA methylation data, ii) gene expression data, and (iii) known pathway knowledge, in order to identify robust and reproducible diagnostic biomarkers. We illustrate our framework by identifying biomarkers for three important diseases: (i) colorectal adenocarcinoma, (ii) kidney renal clear cell carcinoma, and (iii) glioblastoma multiforme. We validate our panels of biomarkers by comparing them with the results of other three existing relevant computational approaches, as well as with 22 other established disease-specific signature panels using 1,994 additional samples obtained from 30 independent, validation-only datasets. The results show that the set of biomarkers identified by the proposed framework is able to distinguish the patients from healthy individuals with significantly higher sensitivity and specificity. compared to others.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know