Monsoon Rainfall Manipulation Experiment (MRME) Carbon Dioxide Data from the Sevilleta National Wildlife Refuge, New Mexico (7/2007-8/2009)
2010
- 41Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage41
- Abstract Views28
- Downloads13
Dataset Description
The Monsoon Rainfall Manipulation Experiment (MRME) is to understand changes in ecosystem structure and function of a semiarid grassland caused by increased precipitation variability, which alters the pulses of soil moisture that drive primary productivity, community composition, and ecosystem functioning. The overarching hypothesis being tested is that changes in event size and variability will alter grassland productivity, ecosystem processes, and plant community dynamics. In particular, we predict that many small events will increase soil CO2 effluxes by stimulating microbial processes but not plant growth, whereas a small number of large events will increase aboveground NPP and soil respiration by providing sufficient deep soil moisture to sustain plant growth for longer periods of time during the summer monsoon.
Bibliographic Details
https://digitalrepository.unm.edu/lter_sev_data/407; https://digitalrepository.unm.edu/cgi/viewcontent.cgi?article=1406&context=lter_sev_data; http://dx.doi.org/10.6073/pasta/36764c148efa530428eb2b0f8dacff14; https://portal.edirepository.org/nis/mapbrowse?packageid=knb-lter-sev.224.108606; https://dx.doi.org/10.6073/pasta/36764c148efa530428eb2b0f8dacff14
Environmental Data Initiative
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know