X-ray diffraction on the thermoelectric silicides at high pressure
2011
- 276Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage276
- Downloads214
- Abstract Views62
Artifact Description
Cobalt Silicide (CoSi2) is a transition metal disilicide that has gathered scientific interest due to its interesting thermoelectric properties and applications in silicon-based devices because of their high temperature stability. It has been reported that CoSi2 undergoes a phase transition at around 0.4 GPa and again at 13 GPa. Furthermore, at 13 GPa the material changes from a cubic cell to an orthorhombic cell, but details of the phase transition at 0.4 GPa could not be determined. To further study the properties of CoSi2 and understand its pressure induced phase changes, we recorded the structural behavior of CoSi2 under pressure.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know