Electroanalytical Tools and Biochemical Assays to Measure the Impact of Noise on Dopamine Neurotransmission in the Central Auditory Pathway
2020
- 195Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage195
- Abstract Views121
- Downloads74
Article Description
In the United States, loss of hearing impacts approximately 48.1 million people. The cumulative effects of noise are experienced in every area of society whether occupational, environmental, or through aging. Previous work has reported changes in dopamine receptor gene expression following acoustic trauma, suggesting a possible role of dopamine in auditory processing. This conclusion is supported by recent data that showed patients suffering from Parkinson’s disease (a condition associated with dopamine depletion) exhibit deficits in auditory processing. Thus, the present work focuses on the role of dopamine neurotransmission within the central auditory pathway and how it’s impacted by noise exposure. Characterizing the complexities of neurotransmission requires elegant methods of inquiry, regarding both the neurotransmitter and neuron physiology. Fast scan cyclic voltammetry (FSCV) with carbon fiber microelectrodes is uniquely well-suited for real time neurochemical measurement because it has the speed, selectivity, sensitivity, and the spatial resolution needed for such measurements. Immunoassays on the other hand provides information about the neural protein receptors distribution and levels. In this work, dopamine neurotransmission release and uptake events are characterized and quantified with FSCV in the inferior colliculus in vitro and in vivo comparing sound exposed and control groups. Additionally, immunocytochemistry (ICC) and Western blot are utilized to evaluate the effects that damaging sound on dopamine receptors within the inferior colliculus. The combination of FSCV and immunoassays provide a comprehensive examination of the role of dopamine and the repercussions of noise in the central auditory pathway.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know