The design and statistical analysis of single-cell RNA-sequencing experiments
Page: 1-101
2016
- 204Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage204
- Abstract Views204
Thesis / Dissertation Description
Next-generation DNA- and RNA-sequencing (RNA-seq) technologies have expanded rapidly in both throughput and accuracy within the last decade. The momentum continues as emerging techniques become increasingly capable of profiling molecular content at the level of individual cells. One goal of this research is to put forward best practices in the design of single-cell RNA-sequencing (scRNA-seq) experiments, specifically as it relates to choices regarding the trade-off between sequencing depth and sample size. In addition to general guidelines, an interactive tool is presented to aid researchers in making experiment-specific decisions that are informed by real data and practical constraints. Further, a new approach to the modeling and testing of differential gene expression in scRNA-seq data is proposed, which notably incorporates salient features (e.g. highly zero-inflated expression values) of single-cell transcription that are otherwise obscured at the tissue level. As single-cell technologies offer an unprecedented window into cell-to-cell heterogeneity and its biological consequences, it is essential that suitable approaches are adopted for both the design and analysis of these experiments.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know