Motion Correction of PET/CT images
Page: 1-129
2017
- 31Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage31
- Abstract Views31
Thesis / Dissertation Description
The advances in health care technology help physicians make more accurate diagnoses about the health conditions of their patients. Positron Emission Tomography/Computed Tomography (PET/CT) is one of the many tools currently used to diagnose health and disease in patients. PET/CT explorations are typically used to detect: cancer, heart diseases, disorders in the central nervous system. Since PET/CT studies can take up to 60 minutes or more, it is impossible for patients to remain motionless throughout the scanning process. This movements create motion-related artifacts which alter the quantitative and qualitative results produced by the scanning process. The patient's motion results in image blurring, reduction in the image signal to noise ratio, and reduced image contrast, which could lead to misdiagnoses. In the literature, software and hardware-based techniques have been studied to implement motion correction over medical files. Techniques based on the use of an external motion tracking system are preferred by researchers because they present a better accuracy. This thesis proposes a motion correction system that uses 3D affine registrations using particle swarm optimization and an off-the-shelf Microsoft Kinect camera to eliminate or reduce errors caused by the patient's motion during a medical imaging study.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know