Identification and modification of dominant noise sources in diesel engines
Page: 1-191
2013
- 43Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage43
- Abstract Views43
Thesis / Dissertation Description
Determination of dominant noise sources in diesel engines is an integral step in the creation of quiet engines, but is a process which can involve an extensive series of expensive, time-consuming fired and motored tests. The goal of this research is to determine dominant noise source characteristics of a diesel engine in the near and far-fields with data from fewer tests than is currently required. Pre-conditioning and use of numerically robust methods to solve a set of cross-spectral density equations results in accurate calculation of the transfer paths between the near- and far-field measurement points. Application of singular value decomposition to an input cross-spectral matrix determines the spectral characteristics of a set of independent virtual sources, that, when scaled and added, result in the input cross spectral matrix. Each virtual source power spectral density is a singular value resulting from the decomposition performed over a range of frequencies. The complex relationship between virtual and physical sources is estimated through determination of virtual source contributions to each input measurement power spectral density. The method is made more user-friendly through use of a percentage contribution color plotting technique, where different normalizations can be used to help determine the presence of sources and the strengths of their contributions. Convolution of input measurements with the estimated path impulse responses results in a set of far-field components, to which the same singular value contribution plotting technique can be applied, thus allowing dominant noise source characteristics in the far-field to also be examined. Application of the methods presented results in determination of the spectral characteristics of dominant noise sources both in the near- and far-fields from one fired test, which significantly reduces the need for extensive fired and motored testing. Finally, it is shown that the far-field noise time history of a physically altered engine can be simulated through modification of singular values and recalculation of transfer paths between input and output measurements of previously recorded data.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know