Unsteady distributed wall shear stress measurements in fluid flows
Page: 1-254
2010
- 334Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage334
- Abstract Views334
Thesis / Dissertation Description
Wall-bounded flows are amongst the most common flows encountered in fluid mechanics. Wall shear stress on the walls of these flow fields is an important engineering quantity as it is responsible for skin friction drag, which is a significant portion of the drag on bodies ranging from airplanes to flow in biological systems. Measuring, understanding and eventually controlling the wall shear stress has implicit financial significance. In general there is limited literature reporting unsteady, distributed wall shear stress measurements, especially in air, due to the lack of sensors to carry out such measurements. This work is a small step in the direction of filling this gap in the literature. A wall shear stress sensor, referred to as the micro-pillar wall shear stress sensor is presented from concept to actual measurements in a wall jet flow field. The micro-pillar shear stress sensor is based on the principle that a micro-pillar on the wall of a wall-bounded flow deflects an amount proportional to the drag force experienced by it. This drag force in turn is proportional to the wall shear stress. Hence, tracking the tip deflection of an array of micro-pillars provides a means to measure the unsteady, distributed wall shear stress. The sensor from design to manufacture along with static and dynamic characterization is presented. It's ability to measure unsteady, distributed wall shear stress is studied using demonstrative experiments. Finally, wall shear stress measurements are carried out on the wall of a three-dimensional turbulent wall jet. The wall jet is subsequently excited and the effect of excitation on the wall shear stress in the near jet exit flow field is studied.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know