A LABORATORY INVESTIGATION OF TWO-CELLED VORTEX FLOWS (TORNADOES)
Page: 1-147
1986
- 21Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage21
- Abstract Views21
Thesis / Dissertation Description
An experimental study of the steady-state kinematics, dynamics, and morphology of two-celled vortex flows has been conducted in the Ward-type tornado vortex chamber (TVC) at Purdue University, with emphasis on exploring the vertical momentum balance in the vortex core and better defining the flow near the external boundaries of the TVC. The TVC was modified for these experiments to more closely compare with numerical models and to allow the implementation of new measurement techniques. Observations of the visualized flow in two-celled vortices and time-averaged static pressure measurements on the axis and at the boundaries of the TVC are reported. Laboratory observations and measurements are compared with results of a numerical model of the TVC flow authored by Rotunno (1984). Laboratory and numerical results are analyzed in terms of the vertical momentum equation. Results show that in the Purdue TVC the flow downstream of the vortex breakdown is everywhere two-celled, with the strongest axial downflow occurring at middle levels. The pressure on the axis in the two-celled vortices increases with height immediately downstream of the breakdown, with the axial pressure gradient tending toward zero farther downstream. The flow-straightening baffle at the downstream terminus of the vortex in the TVC does not critically affect the flow provided the vortex breakdown is well upstream. Analysis of the laboratory findings within the context of the vertical momentum equation shows that the vertical shear stress can play an important role in the axial momentum balance of two-celled vortices by opposing the filling of the vortex core from aloft and so helping to maintain low pressure and high velocities near the surface. The numerical model of Rotunno (1984) is successful in qualitatively replicating several of the flow characteristics in the TVC, including two-celled flow, multiple subsidiary vortices, strongest downflow at middle levels, axial pressure increasing with height, and the role of the vertical shear stress in the axial momentum balance.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know