A TECHNICAL REPORT ON A POLYTOPIC SYSTEM APPROACH FOR THE HYBRID CONTROL OF A DIESEL ENGINE USING VGT/EGR
2002
- 937Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage937
- Downloads612
- Abstract Views325
Article Description
This paper develops a hybrid/gain scheduled control to move a diesel engine through a driving profile represented as a set of 12 operating points in the 7-dimensional state space of a 7th order nonlinear state model. The calculations for the control design are based on a 3rd order(reduced) model of the Diesel engine on which state space is projected the 12 operating points. About each operating point, we generate a 3rd order nonlinear error models of the Diesel engine. Using the error model for each operating point, a control design is set forth as a system of LMI's. The solution of each system of LMI's produces a norm bounded controller guaranteeing that x x i d i d - Æ 1 where xi d is the i-th desired operating point in the 3-dimensional state space. The control performance is then evaluated on the 7th order model.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know