Physical Mechanisms Contributing to Nonlinear Responsivity in Silicon Concentrator Solar Cells
1989
- 210Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage210
- Downloads191
- Abstract Views19
Paper Description
Comparison of experimental data with the results of present models indicates that silicon solar cell operation at high solar concentration is not completely understood. That silicon concentrator cells are not fully understood was first recognized as nonlinearities experimentally observed in the response of the short circuit current to increasing solar concentration. In order to interpret the experimentally observed sublinear responsivities, a review in the literature of the physical mechanisms which have significance for solar cell operation at high solar intensities is essential. These phenomena include bandgap narrowing, Auger recombination, carrier diffusion, and the loss of base conductivity modulation. In this thesis, through modeling with the Solar Cell Analysis Program in One and Two Dimensions, SCAPlD and SCAP2D, an extensive study of these phenomena on the steady-state performance of two major cell designs for silicon concentrator solar cells, the conventional design and the back-contacted design, is made. The back-contacted design includes both the interdigitated back contact (IBC) solar cell and the point contact concentrator (PCC) solar cell.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know