Investigating Photosynthetic Stability: Relation Between Thylakoid Lipid Content and the Stability of the Cytochrome b6f Complex
The Journal of Purdue Undergraduate Research, Vol: 10, Issue: 1
2020
- 2Citations
- 543Usage
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations2
- Citation Indexes2
- CrossRef2
- Usage543
- Downloads345
- Abstract Views198
Article Description
The cytochrome b6f complex is an enzyme found in plants, cyanobacteria, and green algae that catalyzes the transport of electrons in the rate-limiting step of oxygenic photosynthesis. This dimeric complex has an extensive lipid architecture that is primarily composed of five distinct lipid classes: monogalactosyl diacylglycerol (MGDG), digalactosyl diacylglycerol (DGDG), phosphatidyl glycerol (PG), monoglucosyl diacylglycerol (GlcDG), and sulfoquinovosyl diacylglycerol (SQDG). While these lipid classes have been identified, their precise role in the function of the cytochrome complex are only beginning to be understood. Mechanisms describing the relation between thylakoid lipid content on the stability of the b6f complex are not known. This study validates the importance of the lipids on cytochrome b6f dimer formation and stability by showing that SQDG and the synthetic lipids 1,2-dioleoylphosphatidylglycerol and 2-dioleoyl-sn-glycero-3-phosphocholine reduce the temperature dependent rate of monomerization (denaturation) of the native dimer. A novel method of growing the cyanobacterium Synechococcus PCC 7002 anaerobically to test the relation between thylakoid lipid content and growth temperature was developed. This method of growing Synechococcus greatly reduces the relative SQDG content and increases the relative PG content in thylakoid membranes. The analysis of MGDG, DGDG, PG, GlcDG, and SQDG content in Synechococcus cultures grown at 30℃ and 33℃ revealed that the MGDG content depends inversely on the growth temperature.
Bibliographic Details
Purdue University (bepress)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know