Quantum Simulations of Dual Gate MOSFET Devices: Building and Deploying Community Nanotechnology Software Tools on nanoHUB.org
2007
- 759Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage759
- Downloads537
- Abstract Views222
Article Description
Undesirable short-channel effects associated with the relentless downscaling of conventional CMOS devices have led to the emergence of new classes of MOSFETs. This has led to new and unprecedented challenges in computational nanoelectronics. The device sizes have already reached the level of tens of nanometers where quantum nature of charge-carriers dominates the device operation and performance. The goal of this paper is to describe an on-going initiative on nanoHUB.org to provide new models, algorithms, approaches, and a comprehensive suite of freely-available web-based simulation tools for nanoscale devices with capabilities not yet available commercially. Three software packages nanoFET, nanoMOS and QuaMC are benchmarked in the simulation of a widely-studied high-performance novel MOSFET device. The impact of quantum mechanical effects on the device properties is elucidated and key design issues are suggested.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know