Feature Learning as a Tool to Identify Existence of Multiple Biological Patterns
2018
- 46Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage46
- Downloads43
- Abstract Views3
Thesis / Dissertation Description
This paper introduces a novel approach for assessing multiple patterns in biological imaging datasets. The developed tool should be able to provide most probable structure of a dataset of images that consists of biological patterns not encountered during the model training process. The tool includes two major parts: (1) feature learning and extraction pipeline and (2) subsequent clustering with estimation of number of classes. The feature-learning part includes two deep-learning techniques and a feature quantitation pipeline as a benchmark method. Clustering includes three non-parametric methods. K-means clustering is employed for validation and hypothesis testing by comparing results with provided ground truth. The most appropriate methods and hyper-parameters were suggested to achieve maximum clustering quality. A convolutional autoencoder demonstrated the most stable and robust results: entropy-based V-measure metric 0.9759 on a dataset of classes employed for training and 0.9553 on a dataset of completely novel classes.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know