Design of a high performance actuation system enabled by energy coupling actuation
2014
- 248Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage248
- Downloads220
- Abstract Views28
Thesis / Dissertation Description
The main goal of the research was to design, manufacture, and test a new linear actuation system. Research was conducted on several types of actuation methods applied to hydraulic valves. A literature review showed that most existing actuator systems have the actuator and control mass coupled together. There is a need for high speed actuation. The proposed idea is to have the actuation mass always moving while accelerating and decelerating the control mass. The decoupling of these two will allow for the actuation and control mechanism to be independent and only move the control mechanism when needed. Initial modeling, as well as a matrix of design configurations, was done to compare the strengths of magneto-rheological fluid, piezoelectric and magnetics as a clutching mechanism. This led to the initial selection of a magneto-rheological fluid actuator. ^ A prototype of the energy coupling actuator was designed and manufactured. Building of the energy coupling actuator had many design iterations. These iterations built upon each previous design. A custom test stand was built to test the energy coupling actuator, and validate the design. The static power required to spin the kinetic energy source was measured to validate the design. Dynamic testing was performed on three prototypes and on the electrical current profile. The dynamic response of the final energy coupling actuator had a stroke of 1.5 mm in 3 ms and was also able to reach a stroke of 7 mm in 7 ms. The testing of the energy coupling actuator concluded that the product was capable of high-performance actuation.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know