Predictors for expired CO2 in neonatal bag-mask ventilation at birth: observational study
BMJ Paediatrics Open, Vol: 3
2019
- 371Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage371
- Downloads368
- Abstract Views3
Article Description
Background: Expired carbon dioxide (ECO2) indicates degree of lung aeration immediately after birth. Favourable ventilation techniques may be associated with higher ECO2 and a faster increase. Clinical condition will however also affect measured values. The aim of this study was to explore the relative impact of ventilation factors and clinical factors on ECO2 during bag-mask ventilation of near-term newborns. Methods: Observational study performed in a Tanzanian rural hospital. Side-stream measures of ECO2, ventilation data, heart rate and clinical information were recorded in 434 bag-mask ventilated newborns with initial heart rate <120 beats per minute. We studied ECO2 by clinical factors (birth weight, Apgar scores and initial heart rate) and ventilation factors (expired tidal volume, ventilation frequency, mask leak and inflation pressure) in random intercept models and Cox regression for time to ECO2 >2%. Results: ECO2 rose non-linearly with increasing expired tidal volume up to >10 mL/kg, and sufficient tidal volume was critical for the time to reach ECO2 >2%. Ventilation frequency around 30/min was associated with the highest ECO2. Higher birth weight, Apgar scores and initial heart rate were weak, but significant predictors for higher ECO2. Ventilation factors explained 31% of the variation in ECO2 compared with 11% for clinical factors. Conclusions: Our findings indicate that higher tidal volumes than currently recommended and a low ventilation frequency around 30/min are associated with improved lung aeration during newborn resuscitation. Low ECO2 may be used to identify unfavourable ventilation technique. Clinical factors are also associated with persistently low ECO2 and must be accounted for in the interpretation.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know