Carbon Foam Matrices Saturated with PCM for Thermal Protection Purposes
Carbon, Vol: 44, Issue: 10
2006
- 13Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage13
- Abstract Views13
Article Description
In the present work, numerical and experimental studies are proposed to predict and investigate the thermal characteristics of a thermal protection system consists of carbon foam matrix saturated with phase change material, PCM. Several types of carbon foam matrices with different porosities and thermal properties were introduced for the sake of a parametric study. The composite (carbon foam matrix saturated with PCM) was introduced into a cylindrical enclosure while it experiences its heat from a heat source setting on the top of the enclosure. The numerical simulation was performed using the volume averaging technique and a finite volume technique was used to discretize the heat diffusion equation while the phase change process was modeled using the enthalpy porosity method. The results are portrayed in terms of temperature and heat absorption time history and the numerical and experimental results showed good agreement. The results illustrated that the higher the porosity the more stability of the thermal performance of the matrix composite. On the other hand, the thermal conductivity of the composite matrix acts sharply to increase or decrease its heat absorption rate.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know