Towards Improved Inertial Navigation by Reducing Errors Using Deep Learning Methodology
Applied Sciences-BASEL, Vol: 12, Issue: 7
2022
- 68Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage68
- Downloads66
- Abstract Views2
Article Description
Autonomous vehicles make use of an Inertial Navigation System (INS) as part of vehicular sensor fusion in many situations including GPS-denied environments such as dense urban places, multi-level parking structures, and areas with thick tree-coverage. The INS unit incorporates an Inertial Measurement Unit (IMU) to process the linear acceleration and angular velocity data to obtain orientation, position, and velocity information using mechanization equations. In this work, we describe a novel deep-learning-based methodology, using Convolutional Neural Networks (CNN), to reduce errors from MEMS IMU sensors. We develop a CNN-based approach that can learn from the responses of a particular inertial sensor while subject to inherent noise errors and provide near real-time error correction. We implement a time-division method to divide the IMU output data into small step sizes to make the IMU outputs fit the input format of the CNN. We optimize the CNN approach for higher performance and lower complexity that would allow its implementation on ultra-low power hardware such as microcontrollers. Our results show that we achieved up to 32.5% error improvement in straight-path motion and up to 38.69% error improvement in oval motion compared with the ground truth. We examined the performance of our CNN approach under various situations with IMUs of various performance grades, IMUs of the same type but different manufactured batch, and controlled, fixed, and uncontrolled vehicle motion paths.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know