Searching for Herbert Simon: Extending the Reach and Impact of Business Intelligence Research Through Analytics
International Journal of Business Intelligence Research, Vol: 4, Issue: 1
2013
- 18Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage18
- Abstract Views18
Article Description
Since Herbert Simon’s seminal work (Simon, 1957) on bounded rationality researchers and practitioners have sought the “holy grail” of computer-supported decision-making. A recent wave of interest in “business analytics” (BA) has elevated interest in data-driven analytical decision making to the forefront. While reporting and prediction via business intelligence (BI) systems has been an important component to business decision making for some time, BA broadens its scope and potential impact in business decision making further by moving the focus to prescription.The authors see BA as the end-to-end process integrating the production through consumption of the data, and making more extensive use of the data through heavily automated, integrated and advanced predictive and prescriptive tools in ways that better support, or replace, the human decision maker. With the advent of “big data”, BA already extends beyond internal databases to external and unstructured data that is publicly produced and consumed data with new analytical techniques to better enable business decision makers in a connected world. BI research in the future will be broader in scope, and the challenge is to make effective use of a wide range of data with varying degrees of structure, and from sources both internal and external to the organization. In this paper, we suggest ways that this broader focus of BA will also affect future BI research streams.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know