Pebbling on Directed Graphs
2004
- 158Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage158
- Downloads121
- Abstract Views37
Article Description
Consider a finite connected graph G whose vertices are labeled with non-negative integers representing the number of pebbles on each vertex. A pebbling move on a graph G is defined as the removal of two pebbles from one vertex and the addition of one pebble to an adjacent vertex. The pebbling number f(G) of a connected graph is the least number of pebbles such that any distribution of f(G) pebbles on G allows one pebble to be moved to any specified but arbitrary vertex. We consider pebbling on directed graphs and study what configurations of directed graphs allow for pebbling to be meaningful. We also obtain the pebbling numbers of certain orientations of directed wheel graphs Wn with odd order where n > 6 and directed complete graphs Kn with odd order where n > 5. G is said to be demonic if f(G) = n where n is the order of G. We demonstrate the existence of demonic directed graphs and establish that the sharp upper bound and sharp lower bound of the pebbling numbers of the directed graphs is the same as that of the undirected graphs: n < f(G) < 2n − 1.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know