An Implicit Interface Boundary Integral Method for Poisson’s Equation on Arbitrary Domains
Journal of Computational Physics, Vol: 247
2013
- 689Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage689
- Downloads657
- Abstract Views32
Article Description
We propose a simple formulation for constructing boundary integral methods to solve Poisson’s equation on domains with smooth boundaries defined through their signed distance function. Our formulation is based on averaging a family of parameterizations of an integral equation defined on the boundary of the domain, where the integrations are carried out in the level set framework using an appropriate Jacobian. By the coarea formula, the algorithm operates in the Euclidean space and does not require any explicit parameterization of the boundaries. We present numerical results in two and three dimensions.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know