A Study of Deep Reinforcement Learning in Autonomous Racing Using DeepRacer Car
2021
- 2,843Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage2,843
- Downloads2,255
- 2,255
- Abstract Views588
Thesis / Dissertation Description
Reinforcement learning is thought to be a promising branch of machine learning that has the potential to help us develop an Artificial General Intelligence (AGI) machine. Among the machine learning algorithms, primarily, supervised, semi supervised, unsupervised and reinforcement learning, reinforcement learning is different in a sense that it explores the environment without prior knowledge, and determines the optimal action. This study attempts to understand the concept behind reinforcement learning, the mathematics behind it and see it in action by deploying the trained model in Amazon's DeepRacer car. DeepRacer, a 1/18th scaled autonomous car, is the agent which is trained to race autonomously on a track. Optimum race line coordinates were calculated which allowed the agent to follow the fastest possible route on a given track. The agent was then trained using proximal policy optimization (PPO). Performance metrics such as the average reward per episode and cumulative reward were examined to fine tune the model. To further understand the distribution of action spaces, log analyses tools provided by the amazon was used. Based on the log analysis data, any un-used action was removed for efficient training. The trained model was uploaded into the DeepRacer car to test it in a race track outside of simulation.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know